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Abstract-‘We developed an inductive model for thermal conductivity of sensible heat of deposited snow 
using random resistance network theory and parametric statistics. The model identifies the geometric 
quantities that determine this physical property. It allows us to quantitatively link conductivity to natural 
transformations that are known to change conductivity and increases our ability to test such theories 
experimentally. We are now able to show how microstructural quantities such as grain size distribution 
and average coordination number interact with each other to govern conductivity. These results may easily 
be extendesd to other porous geological and industrial materials. 0 1998 Elsevier Science Ltd. All rights 

reserved. 

INTRODUCTION 

Our understandlng of the macroscopic physical 
properties of a wide range of geological materials is 
increasingly dependent on our ability to make sense 
of their microscopic structures. The composition of 
porous media varies with grain size distribution, con- 
nectivity, and degree of intergranular bonding [l, 21. 
Thermal properties vary with compositional changes 
and these variations must be understood to estimate 
exchanges of mass and energy between snow covers 
and the atmosphere and hydrosphere. Sturm et al. [3] 
analyzed the long history of correlating snow thermal 
conductivity with density. Adams and Sato [4] mod- 
eled the conductivity of randomly packed ice spheres 
and demonstrated the importance of intergranular 
bonding for heat flow. Shabtaie and Bentley [5] used 
concepts from percolation theory to correlate micro- 
structure and thermal conductivity of dense snow and 
firn. Kossacki et al. [6] used sintering theory and a 
simple packing scheme for ice spheres to demonstrate 
that bond growth in low density porous ice can cause 
sensible thermal conductivity in cometary materials 
to range over two’ orders of magnitude. In a theoretical 
investigation of mechanical properties, Watanabe [7] 
predicted the tensile strength of dry snow using a 
model that consisted of systematically arranged ice 
spheres with varying network connectivity and bond 
size. 

We sought an inductive method for predicting ther- 
mal conductivity of snow based on specific micro- 
structural properties that have physical meaning for 
heat transfer. To accomplish this, we used effective 
medium theory [8] to identify the fundamental par- 
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ameters that control heat flow through the ice grain 
lattice. We developed a model for thermal con- 
ductivity that can respond to the metamorphic pro- 
cesses in snow, whose physical causes are largely 
understood. This approach does not treat the con- 
tribution of latent heat transfer to snow thermal con- 
ductivity. The latent component arises from water 
vapor diffusion that is driven by temperature gradi- 
ents. In the absence of convection, latent heat transfer 
may account for as much as 50% of the total heat 
transfer, depending on temperature and snow type. 
The latent heat transfer component also depends on 
microstructure, but this dependence is too com- 
plicated to be treated by the effective medium approxi- 
mation at present. 

EFFECTIVE MEDIUM APPROXIMATION 

The effective medium approximation (EMA) is an 
outgrowth of the more general percolation theory [8]. 
The type of approximation that applies most sensibly 
to snow is the lattice EMA. This approximation 
assumes that the material of interest can be modeled 
as a random lattice in which transport occurs in quasi- 
linear segments, which meet at junctions where the 
transported quantity is conserved [9]. The central con- 
cept is that macroscopic potential fields (e.g., tem- 
perature or voltage) are produced by the combination 
of a large number of microscopic fields surrounding 
individual conduction elements. At any location in the 
heterogeneous material, the field may be thought of 
as the sum of the microscopic field due to the nearest 
conductor and the macroscopic field due to the total 
effect of all the other conductors in the network. This 
sum and Fourier’s equation are used to find an 
ensemble mean value that, when the conductances are 
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NOMENCLATURE 

cross-sectional area of intergranular 
bond 
area of plane for calculation of t-factor 
intercept of g(rgrain) 
sintering diffusivity 
distance in z direction between center 
of intergranular bond and plane 
separating R, from R, 
diffusion coefficient of water vapor in 
air 

f(r,,,,,) probability density function of grain 
radius 
intergranular bond thermal 
conductance 
ensemble mean thermal conductance 
probability density function of 
conductance 
total number of bonds passing through 

4 
thermal conductivity of air 
Boltzmann’s constant 
thermal conductivity of ice 
thermal conductivity of ice grain 
lattice 
thermal conductivity due to 
conduction and mass diffusion 
thermal conductivity due to mass 
diffusion 
length of ith bond passing through A, 
specific latent heat of sublimation of 
water 

rf 
PO 

4 
qd,K 

rgraln 
RI> R, 

t 
T 
X 
Z 

mass per water molecule 
slope of g with respect to rgraln 
equilibrium water vapor pressure over 
a plane ice surface 
heat flux due to conduction 
heat flux due to conduction and mass 
diffusion 
grain radius 

thermal resistance of region of 
intergranular bond 
time 
absolute temperature 
intergranular bond radius 
displacement coordinate along 
intergranular bond. 

Greek symbols 

: 
surface tension of ice/air interface 
intermolecular spacing of water 
molecules in ice 

r coordination number 

1? mean grain radius 
0 angular displacement of coordinate of 

P 
P outside radius of curvature of 

cylindrical walls in region R, 

Pk. ice density 

PS snow density 
standard deviation of grain radius 
angle between ith bond and 
macroscopic temperature gradient. 

assembled in a network, generates the correct macro- 
scopic conductance [9, lo]. 

The approximation of the ice grain lattice thermal 
conductivity, K,,,, is given by 

K,,, = gm *(t-factor) (1) 

in which gm is the ensemble mean conductance value 
based on intergranular bond shapes, and the t-factor 
is a spatial average that is weighted with respect to 
conductor lengths and orientations. gm is the solution 
of 

s 3o 
-CC 

dg = 0 (2) 

in which g is the random variable representing inter- 
granular bond conductance values, G is the prob- 
ability density function of g, and c is the mean coor- 
dination number (number of bonds per grain). The t- 
factor arises from the assumption of steady state flow 
and is given by 

t-factor = f i L, cos 4, 
P InA* 

in which A, is the area of a plane normal to the 
macroscopic temperature gradient through which a 
total of I bonds (conduction elements) pass. Li is the 
length of the ith bond and & is the angle between the 
ith bond and the macroscopic temperature gradient 

1111. 
Koplik [12] has demonstrated excellent agreement 

between this approximation and the numerical sol- 
ution for a variety of standard networks (e.g., hexa- 
gonal, trigonal, cubic). However, Koplik et al. [l l] 
attributed disagreement with sandstone results to 
insufficient sampling of laboratory samples, over- 
simplification of pore space geometry for modeling 
purposes, and relationships between pores that invali- 
dated key assumptions about statistical independence 
of flow paths. Our theoretical application of EMA to 
snow is not limited by sample size, and we treat flow 
correlation explicitly to avoid similar problems. 
Nevertheless, we are forced to make geometric sim- 



Conductivity of sensible heat in dry snow 2655 

plifications that impose limitations on the appli- 
cability of the method. 

APPLICATION OF EMA TO SNOW 

Falling snow crystals occur in a variety of forms, 
but once snow is deposited on the ground, grains bond 
together and tend to become rounded. Atmospheric 
conditions accelerate geometric changes that are 
driven by thermodynamic instabilities (e.g. [13]). 
There is a continuous spectrum of metamorphic states 
of deposited snow. and the spectrum is so wide that it 
is useful to characterize the material based on grain 
size distribution, bulk density, and dominant meta- 
morphic processes [ 141. 

In most cases, the advective and radiative com- 
ponents of heat transfer can be neglected in snow. 
Then, the most convenient way to account for total 
diffusive thermal conductivity is to treat it as a sum 
of thermal conduSction through the ice grain lattice 
and of the transfer of latent heat by water vapor 
diffusion. Conduction through air is ignored because 
it is two orders of magnitude smaller than that 
through the ice. Diffusive heat flux is then written as 

qdiff = -E~total VT= -(K,,,+K,,,)VT (4) 

where K,,, is the thermal conductivity of the ice grain 
lattice and Kvap is the effective thermal conductivity 
that is associated with the transfer of latent heat of 
water vapor. The two mechanisms are typically mod- 
eled as parallel, b’ut on the scale of grains, they are 
clearly hybrid parallel-serial pathways (e.g. [ 11). 

There have been direct measurements of K,,, by 
using low temperatures to suppress the effects of vapor 
transport [15-171, but we know too little about the 
microstructural conditions in the experiments that led 
to these values to be useful in determining the depen- 
dence of thermal conductivity on microstructure. 

MODEL REQUIREMENTS 

We must define clearly the nature of the flow 
through the system to model the snow as a system of 
random thermal resistors (or conductors). Heat flow 
must follow Fourier’s equation and it must be con- 
served at every point in the network [lo]. The elements 
that we model as conduction elements in the network 
must be linear (or quasi-linear) and statistically inde- 
pendent. The first requirement arises because we 
assume that there is a constant angle 4 between an 
individual conductor and the macroscopic tem- 
perature gradient. In principle, tortuosity of indi- 
vidual conductors could be admitted by allowing 4 to 
vary along the length of the conductor and weighting 
the contribution of each conductance element accord- 
ingly. We assume that the conductance elements are 
the intergranular bonds that grow naturally between 
ice grains. If we further assume that an individual 

conductor is a bond between the centroids of two 
spherical grains (Fig. l), then the linearity require- 
ment is met. 

The second requirement calls for additional 
caution. If grains are connected in a systematic way, 
such as those in a chain, we must expect that flow 
through a grain in the middle of the chain would 
depend on flow through the end-members of the chain. 
Thus, flow through these grains would be statistically 
dependent. In contrast, some snow is generally iso- 
tropic and lacks obvious multigrain structures. In gen- 
eral, snow held at a constant temperature is much less 
likely to be dominated by multigrain structures than 
snow held under a temperature gradient. We assume 
that flow among grains of the former is statistically 
independent while flow among grains of the latter is 
not. 

MODELING THE CONDUCTORS IN SNOW 

Intergranular bonds are approximately hourglass- 
shaped. As the bond develops, the bond diameter 
grows and the outside radius of curvature (Fig. 1) 
increases. Using the analogy between electrical and 
thermal resistance and summing incremental con- 
ductances ([18], p. 507), we calculate snow’s con- 
ductance using 

where g is the effective bond conductance, k,, is the 
conductivity of ice, and A,(z) is the cross-sectional 
area (Fig. 2). This conductance is then used in the 
calculation of the conductance of the average con- 
ductance element, g,,,. 

We calculated the effective thermal conductivity of 
bonds between pairs of identical spherical grains in 
snow. It would be ideal to be able to treat the indi- 
vidual grains in each bonded pair as if their sizes 
were statistically independent, but our simplification 
is justified by Kuzcynski’s [ 191 observation that bond 
growth is controlled by the smaller grain. 

Our working definition of the bond is the ice 
between planes that intersect the grain centroids (zl 
and z2 in Fig. 2). Using equation (5), we summed the 
series of incremental thermal resistances instead of 
conductances along the bond axis for the spherical 
and paraboloid regions. This gives the thermal resist- 
ance of Region I (Fig. 1) : 

R, = & tanh-’ (-1 (6) 

where rgrain is grain radius, and c is the length in the z- 
direction between the intersection of the two regions 
and the center of the bond. The resistance of Region 
II is given by 
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Fig. 1. Model of the intergranular bond. 
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Fig. 2. Geometric quantities required for the calculation of 
the conductance of an individual bond. 

(7) 

where p is the external radius of curvature, x(O) is the 
internal radius of the bond in a plane perpendicular 
to the bond axis, and 0 sweeps from the intersection 
of the spherical and paraboloid regions to the center 
of the bond. The bond conductance is then computed 
as 

1 
g(rgrainrXmin) = 2[R, (rgrain, x& + R2(r x >I’ grain, nun 

(8) 

In snow, g for any given bond changes with time and 
snow type and is the fundamental element of heat 
conduction in the grain lattice. The first step in this 
EMA is that snow will be treated as a population of 
thermal conductors whose values follow a particular 
frequency distribution [G(g)] that gives the average 
conductance gm, 

For a given relative bond radius, x,,Jrgram, the con- 
ductance of the bond is approximately proportional 
to the grain radius (Fig. 3), since the contact area 
between grains increases with grain size, but the length 
of the conductor in our model increases as 2r,,,,,. For 
a given grain radius, the dependence of g on x,,,/rgra,n 
is also surprising (Fig. 4). For small relative bond 
sizes, the dependence is strong. The slope of g vs 

J-kin/rgram then decreases for moderate values of x,,,J 
r,,,,, and it increases slightly as the bond approaches 
a cylindrical shape (x,,,,Jrgrain = 1). This behavior 
suggests that when bonds are growing initially, we 
should expect conductances to change more rapidly 
than when they are more mature. This agrees quali- 
tatively with our observations and theories of a range 
of snow properties. 

This model can calculate exactly the conductivity 
of a lattice constructed of such bonds in any arbitrary 
configuration. However, in snow, as in most aggregate 
materials, the bonds are not of uniform conductance. 
A statistical approximation could be made by directly 
estimating the probability density function of bond 
conductances. While we have no physically reasonable 
way to estimate such a distribution, we do have some 
evidence that grain sizes in snow are distributed log- 
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Fig. 3. Bond conductance vs grain radius T,~~,,, with the relative bond radius x,,./rpram as a parameter. 
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Fig. 4. Bond conductance vs x,,,Jr,,,,, with rgWn as a parameter. In the initial stages of formation, bonds 
between larger grains gain conductance so much more rapidly than those between smaller grains that when 
plotted on I:he same scale, it appears that they have finite conductance when the relative neck radius is 

zi:ro. In reality, when xmln/rgrain goes to zero g converges to zero for all values of rSraln. 

normally as are the particles in many aggregate sys- represents a population of bond conductances that 
terns [20]. A lognormal distribution has been observed constitutes the thermal conduction network and 
directly in wet snow by Colbeck [21]. Therefore, we whose parameters are related to observable physical 
derive a probabili’ty density function, G(q), for bond properties. 
conductances by assuming that rgrain is distributed log- G(g) is derived by fixing the relative bond radius. 
normally and by using the observation that bond This implies that everywhere in the modeled snow, 
growth is limited by the smaller grain. Thus, G(g) bond radii have grown to the same fraction of the 
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radii of the grains they join. Then, bond conductance 
depends only on the variable r grain, with meta- 
morphic state, represented by x,,,/rgralnr as a 
parameter. Thus, 

(9) 

Assuming rgrain is lognormally distributed : 

(10) 

where q and CJ are the mean and standard deviation 
of the distribution, respectively. In order to obtain the 
probability density function of conductances, G(g), 
we need to know the functional form of equation (9), 
which is reasonably approximated as : 

9 z M * IgraIn. (11) 

M depends on the relative neck radius xmin/rgraln (Fig. 
3). Following DeGroot ([22], p. 153), the probability 
distribution function G(g) is then given by 

G@) =f Lr,ra,n@>l 9. 1 I (12) 

Using equation (1 1), 

(13) 

and inserting equations (10) and (13) into equation 
(12), we obtain 

G(g) g 
1 

sfi in(a) 
exp (14) 

which is nearly lognormal. 9 and 0 are the parameters 
of f(rgram). Now, the first averaging step of the EMA 
is employed to obtain g,,,, defined as the solution of 
equation (2). 

CONDUCTOR CONNECTIVITY 

In previous modeling efforts in snow physics, little 
progress has been made to explicitly determine the 
value or the significance of the coordination number. 
Adams and Sato [4] used an empirical relationship 
between coordination number and ice volume fraction 
that we express in terms of snow density, ps (g cm-3) : 

[ = 3.565-8.108p,+29.52~,2. (15) 

Ridgway and Tarbuck [23] obtained an empirical 
relationship between void fraction and coordination 
number for ‘random packings’ of spheres. Later, 
Dullien [24] asserted that this relationship also holds 
for a wide variety of regular and random aggregates. 
For snow, it is : 

ps = -0.066+0.109~-0.004~2. (16) 

These relationships must be used with caution since 
they give unreasonable values of coordination number 
in the limit pI + 0. Ridgway and Tarbuck also give 
the void fraction for the most regular packing possible 
for uniform spheres at any coordination number. We 
show this in terms of snow density along with the 
empirical relationships (Fig. 5). 

ACCOUNTING FOR NETWORK GEOMETRY: 

THE t-factor 

The next step toward determining K,,, is to estimate 
the t-factor in equation (3). The summation in (3) 
includes all of the bonds that pass through a plane 
of area A,, which is normal to the constant, one- 
dimensional, macroscopic temperature gradient, T’. 
In general, the summation divided by A, represents a 
discrete averaging process that conceptually homogen- 
izes the heterogeneous material over a region. Ideally, 
we would use a three-dimensional reconstruction to 
calculate the t-factor directly from serial photo- 
micrographs of an actual snow sample, but such tech- 
niques are still under development. Thus, we used the 
common assumptions that grains are spherical and 
are arranged on a cubic lattice (Fig. 6) to evaluate the 
t-factor. The density of such a lattice, about 480 kg 
mP3, is within the range of dense snow. An ideal 
lattice of this type has a coordination number of six. 
Equation (3) requires that we calculate the sum of the 
components of all bonds passing through a plane that 
is perpendicular to the average temperature gradient. 
For the face-centered cubic lattice, a unit cell has area 
A,, normal to the temperature gradient, given by 

A, = (2~)~ 

in which 11 is the mean grain radius. 

(17) 

Aggregates with true face-centered cubic (fee) 
structure have coordination number six, and the 
empirical equations (15) and (16) show that real 
aggregates exhibit a similar relationship between den- 
sity and coordination number when corrections are 
made for specific gravity. Later, we treat snow as a 
cubic aggregate with coordination number six, but 
experience suggests that this is an overestimate. Rapid 
bond growth between snow grains during the settling 
process and the formation of necks in the needle- 
shaped particles interfere with the packing process 
and generates a large number of grains with a small 
number of bonds. This lowers the average coordination 
number. 

Quantitative study of snow coordination number is 
lacking, so we estimate maximum and minimum 
values for klat using the bounding t-factor values based 
on coordination numbers six and three, respectively. 
The maximum value arises in a straightforward man- 
ner by including all six bonds for each grain in the 
fee model. The minimum requires that we treat the 
aggregate as if it were packed as an fee structure with 
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Fig. 5. Two empirical approximations of coordination number as a function of aggregate density compared 
to calculations using systematic packing. 
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Fig. 6. Model for determination of t-factor. Bold line segments schematically indicate locations of inter- 
granular bond axes, but their geometries are defined as in Figs. 1 and 2. Bonds perpendicular to the plane 
of the diagram are not shown. The r-factor is calculated over a representative area A, in plane P, 

perpendicular to temperature gradient. 

some intergranular bonds missing. As such, we apply 
the coordination number in a simple stochastic man- 

1 
t-factor = - 

21 
08a) 

ner to the t-factor by assuming that each bond has 
only a 3/6 probability of being present in the grain when the snow has maximal connectivity and 

lattice. 
Finally, we note that A, has an implicit cosine t-factor = 3 L 

dependence that renders the z-factor independent of 62q 
(lgb) 

Cp when the cubic structure is rotated, and the term is when it has minimal connectivity. This would cor- 
given by respond to densities of 480 and 225 kg rne3, respec- 
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tively, following Fig. 5. The relationship between den- 
sity and coordination number when density is 225 kg 
mP3 is not based on fee structure with missing bonds, 
but we have made this assumption to isolate the effects 
of coordination number and to aid in determining a 
lower bound for k,,, that is geometrically consistent 
with its upper bound. 

TIME DEPENDENCE: EFFECT OF SINTERING 

The geometric instability of snow is well-known, 
and it is this characteristic that gives rise to the need 
for a model that shows how thermal conductivity 
changes in response to metamorphism. Where two 
grains come into contact, sintering causes substantial 
bonds to form between them as a result of mass 
diffusion into the region of the contact area. We use 
the gaseous diffusion model of Hobbs and Mason 
[25], which is based on bond neck size, x,Jrgrain, time, 
t, and temperature, T: 

where B(T) is a function of temperature and physical 
constants : 

Cw,,, -’ 
~ 

I k,,,k,T= 
(20) 

Although their sintering model only qualitatively 
agrees with the measurements of bond radius growth 
they obtained, we used it because we desired a general 
physically based model and, for ice, this one has not 
yet been superseded. Since our EMA model is general, 
future modifications of the sintering model would be 
easily incorporated. Therefore, we used the Hobbs 
and Mason [25] model to investigate the dependence 
of bond conductance on time, which constrains p in 
equation (7) and allows g to be calculated using (8). 
For a given elapsed time, the dependence of g on v,,,~,, 
is virtually linear (Fig. 7) and, while it is common to 
observe relative bond radii as large as about 0.7, that 
is the upper limit of what we consider. From this, 
bond conductance is shown as a function of time with 
rgraln as a parameter in Fig. 8. 

To apply the network approximation to a time- 
varying lognormal distribution of grains, it is necess- 
ary to find the time-dependent functional dependence 
ofg on rgrai, in analogy with equation (11). The results 
in Fig. 7 indicate that a linear curve fit is appropriate 
(r& = 0.996). At any time, then, the functional 
dependence of g on rgraln will be defined by the values 
of slope M and intercept b, 

g(rgrain, t) = M(t) * rgraln + NO. (21) 

The time dependences of M and b may themselves be 
approximated by polynomials that depend on tem- 
perature. Then the probability density function for 

bond conductance for a given time may be derived 
in the same manner as in the time-dependent case. 
Equations (13) and (14) become, for a given tem- 
perature, 

rgra,“@, t) g “2 

1 
G@, t) E 

[s-b(t)]&dn(o) exp I- 
(23) 

Equations (22) and (23) have been evaluated using 
a mean grain size of 0.2 mm, a standard deviation of 
1.2, and four values of t that span the early stages of 
development of a dry snow cover (Fig. 9). As the snow 
matures and the population of conduction elements 
becomes more conducting, the dispersion increases 
because the product VM grows; the details of this 
effect will be different for different choices of growth 
models and particle size distributions. Furthermore, 
no model of the temporal evolution of the grain size 
distribution exists for dry snow, but if such a model 
were available, we could easily include it in equation 

(23). 

MICROSTRUCTURAL CONTROL OF 1(1., 

THROUGH NETWORK AlTRIBUTES : 
ANALYSIS OF g,,, 

In our model, mean grain radius, ye, geometric stan- 
dard deviation of grain radius, CJ, average coor- 
dination number, c, and time, t, govern ensemble aver- 
age conductance, gm. In most cases, gm increases as 
each one of these parameters increases. For example, 
larger grains enhance heat transfer across individual 
bonds and thus cause the g,,, to increase. Indeed, g,,, is 
generally most sensitive to ;rl. Also, as p increases, there 
are more pathways available for heat conduction, so 
gm also increases. 

There are also interactions among the micro- 
structural quantities that have important effects. 
Observers have noted that in many systems whose 
constituents have properties that depend on log- 
normally distributed particles, a small number of very 
large particles from the tail of the distribution can 
have a controlling influence on the macroscopic 
behavior of the system. We also observed this 
behavior in our model, but only when the coor- 
dination number is large. When the coordination 
number is small, it is the low-valued end of the dis- 
tribution that limits heat conduction. Our interpret- 
ation is that when the network is poorly connected 
(small coordination number), highly conductive path- 
ways are unable to dominate heat flow because they 
are isolated from each other. On the other hand, when 
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Fig. 7. Bond conductance vs rgraln at four different times after the grains are brought into contact. We 
truncate the bond growth at the cylindrical limit. 

1.6 
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t (9 

Fig. 8. Bond conductance vs time with rgrai, as a parameter. 

individual conductors are more likely to be inter- 
connected as in the case of a large coordination 
number, even a few highly conductive pathways can 
have a strong effect on the overall conductivity of 
the system because heat can by-pass highly resistive 
pathways. 

Figures 10 and 11 show g,,, as a function of q and Q 
at four times and two values of [. Note that ag,/& is 
most positive for high connectivity and well- 
developed bonds, while it is most negative when con- 
nectivity is low, bonds are young, and grains are large. 
This reflects the connectivity-limited heat flow 

through the network and the influence of poorly con- 
ducting bonds when connectivity is small. The sen- 
sitivity to poorly conducting bonds seems to be 
greatest when connectivity and bond growth are small 
and when grains are large. 

When grains are large, they offer less resistance 
to heat flow and allow the flow-limiting effects of 
coordination number to dominate. It is important to 
recognize that in drawing this conclusion, we are mak- 
ing use of the model to separate the effects of the 
population of bonds from the effects of the aggregate 
as a whole. For example, for a given relative neck 
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Fig. 9. (top) Probability density function of conductances at four times; (bottom) probability function of 
conductances at four times. Mean grain size, q, and standard deviation, 0 (dimensionless), are 0.2 mm and 

I .2, respectively, for all curves. 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

v (mm) 

Fig. 10. gm vs 1 and 0 with average coordination number of 2.5. 

radius, heat flow through a bond will increase as grain 
size increases. As we expect, ag,,,/aq is always positive 
and is greatest when t and 0 are large. This analysis 
of gm shows the importance of the grain size effect 
relative to the effects of network connectivity. In con- 
trast, when we examine the behavior of the macro- 
scopic system using the t-factor, we will see that the 
macroscopic conductivity decreases with increasing 
grain size. 

CONDUCTIVITY OF SENSIBLE HEAT THROUGH 
THE AGGREGATE: THE ROLE OF THE &FACTOR 

Calculated values of K,,, (Figs. 12 and 13) bound 
the expected values of the thermal conductivity of the 
ice grain lattice of snow [l, 171. Figure 12 shows the 
upper limit calculated from the fee-structured model 
and Fig. 13 shows the lower limit using the simple 
stochastic modification of that model discussed above. 
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Fig. 12. K,,, vs 4 and o with average coordination number of six 

Both show the s,ame general dependences on inter- 
granular bond ‘development and grain size dis- 
tribution paramel:ers. 

In the maximum estimations of Fig. 12, estimates 
for the most mature stage of development (10d) reach 
and exceed the thermal conductivity of solid ice. While 
fully mature snow is expected to contain well- 
developed bonds, these are clearly overestimates of 
Klat since the bonds would not produce a network that 
behaves like solid ice. These high values reflect the 
cautious estimate of the coordination number and 
show our limited ,ability to estimate the t-factor. More 
realistic estimate:3 of the coordination number and 
the t-factor are mquired, and these should bring the 
estimated maximum values of K,,, more in line with 
published data and increase confidence that the range 
reported here accurately bounds actual values. Unfor- 

tunately, such estimates appear to be beyond the reach 
of analytic geometry and will have to wait for the 
development of better numerical and microscopic 
techniques. 

The most salient feature of the estimates of K,,, is 
that the l/q dependence introduced by the t-factor as 
we modeled it gives a counterintuitive dependence of 
K,,, on mean grain size. Clearly, though, as the grains 
become larger, the number of bonds per unit volume 
must decrease; while g,,, increases with increasing 9, 
the t-factor decreases faster. To support this interpret- 
ation, more advanced quantitative microscopic tech- 
niques coupled with careful laboratory measurements 
will be required. We interpret the dependence of K,,, 
on 0 as a direct expression of the interplay between 
conductance distribution and coordination number 
that controls g,,,. 
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DISCUSSION 

This model is a starting point for understanding the 
variation of thermal conductivity with snow type and 
at the boundaries of a snow layer, where textural 
gradients are commonly observed but still difficult 
to quantify. It requires more knowledge about the 
characteristics of snow grains and interconnectedness 
than models that preceded it. In exchange for the 
additional challenge of using the model, it can incor- 
porate information in a physically meaningful way. 
We obtained reasonable physically based approxi- 
mations for the lattice thermal conductivities of 
rounded, dense, dry snow in the absence of multigrain 
structures. Arons [17] showed that the approach can 
easily accommodate multigrain structures, as long 
as conductance pathways are defined as statistically 
independent with respect to heat flow. Sturm et al. [3] 
showed that thermal conductivity of snow containing 
multigrain structures is less sensitive to changes in 
density than snow without such structures, and Arons 
[17] found that sensible heat flow in the former was 
sensitive to the length of the structures. 

Freshly fallen snow could also be treated, but care 
would be required to interpret the meaning of ‘con- 
duction element’ in a network that is partly composed 
of dendritic particles. Developing an analytical 
expression for the t-factor that applies to snow of 
lower density that preserves a sense of physically 
realistic quantitative geometry will be challenging. 
Estimating this quantity requires knowledge of bond 
length, orientation, and volumetric concentration, 
which makes it sensitive to changes in snow type. 
Therefore, a method to estimate the t-factor directly 
should be developed using photomicrographs as per 
Arons et al. [26]. 

We used the semiempirical sintering model 
developed by Hobbs and Mason [25] to investigate 
changes in thermal conductivity due to sintering, but 

disagreement between their model and their data sug- 
gest that we are still a long way from understanding 
the details of sintering between pairs of ice bodies. We 
are even further from a compelling model for sintering 
in multiparticle aggregates. Knowledge of sintering 
must be developed if we are to gain further under- 
standing of the time dependence of K,,, or other im- 
portant physical properties. 

Another important extension of the theory pre- 
sented here will be the treatment of latent heat flow. 
Although sensible heat accounts for at least half of 
the heat flow in snow, latent heat transfer can be as 
important at high temperatures. When vapor trans- 
port is significant, local temperature gradient 
enhancement [27] introduces a nonlinearity that pro- 
hibits the direct application of EMA to the vapor 
component of heat transfer in dry snow. The vapor 
flow component of the overall conductivity could 
possibly be linearized and introduced as a subpopu- 
lation of conductance values. However, at present, we 
are restricted to studying only heat flow through the 
ice grain lattice using the EMA. Nonetheless, under- 
standing the characteristics of heat flow through the 
grain lattice will likely lead to a greater understanding 
of the water vapor contribution as well. 

CONCLUSIONS 

Changes in snow microstructure cause changes in 
its thermal conductivity. This model allows us to 
understand how the conduction of sensible heat in 
snow depends on microstructural characteristics that 
are well-defined, physically meaningful, and, in prin- 
ciple, measurable. We know that the thermal con- 
ductivity of snow depends on the meteorological con- 
ditions that prevailed during its deposition and on 
the thermal and mechanical processes that act on it 
thereafter. We can now quantify how the conduction 
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of sensible heat in snow is governed by the charac- 
teristics that are sensitive to meteorological and ther- 
mal history. They include grain bond geometry, grain 
size distribution, coordination number, bond orien- 
tation, bond concentration, temperature, and time. 
By extension, one may also demonstrate the depen- 
dence on temperature gradient through the devel- 
opment of multigrain structures. 

We modeled the bonds in snow as statistically inde- 
pendent quasi-linear conductors between pairs of 
grains. The conductance of each bond was calculated 
directly. We expected this conductance to increase 
quadratically with relative neck size, x,,,,,/rgraln, as it 
would for a cylindrical object, but we found a more 
complicated relationship. Conductance increases rap- 
idly with relative neck size at first, then slows for 
moderate values of x,in/rgraln, and accelerates again as 

xmmlrgraln approaches one. This is independent of the 
kinetics of sintering and shows the need for careful 
modeling of heat transfer and other bond-dependent 
properties in snow when the material is undergoing 
metamorphism. 

We determined an ensemble mean conductance 
value for the population of bonds using concepts from 
random resistance network theory. This average is 
usually controlle’d by the mean of the conductance 
distribution, but it also depends on the average coor- 
dination number of the ice grain network. The low- 
conductance tail of the probability density function 
of bond conductances is responsible for limiting heat 
flow when connectivity is low. This effect is stronger 
when the mean of the conductance distribution is 
higher and the low-conductance tail is thus longer. 
These new insights help explain the results of previous 
qualitative investigations of parallel and serial heat 
flow through snlow and other aggregates. We also 
showed how the ensemble mean conductance changes 
as the metamorphic process of sintering evolves. Our 
ability to model SI ntering in snow and other aggregates 
is limited, but there is no doubt that the process is 
critical for the evolution of thermal conductivity and 
other properties in snow. The present model dem- 
onstrates how its effects can be inductively included. 

We then used the t-factor to show that while the 
ensemble mean conductance increases with increasing 
grain size, the macroscopic conductivity decreases as 
grains become larger and force the intergranular bond 
density to decrea,se. Estimates of the t-factor are more 
compelling for high density snow than for low density 
snow, because of packing irregularities at low density. 
Improved estimates of the t-factor for low density 
snow will require the application of emerging numeri- 
cal and micrographic techniques. In general, such 
techniques should enable us to calculate the necessary 
statistics of bond conductances, orientations, and 
coordination numbers, and will improve our knowl- 
edge of both g,,, and the t-factor. 

The power of the effective medium approximation 
for conductivity of sensible heat in snow lies in its 
physical foundation and versatility. We are now able 

to explain the control of heat flow through the ice 
grain lattice of snow by geometric attributes that can 
be observed in nature. In principle, the effective 
medium approximation can be applied to a variety of 
different snow types and meteorological conditions 
that are important in cold regions. 
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